Changes between Version 2 and Version 3 of tutorial/ProbabilisticLearningModels


Ignore:
Timestamp:
05/25/09 11:58:14 (16 years ago)
Author:
hees
Comment:

intro, added NN

Legend:

Unmodified
Added
Removed
Modified
  • tutorial/ProbabilisticLearningModels

    v2 v3  
    1  
    2 == Tutorial About Probabilistic Learning Models == 
     1= Tutorial About Probabilistic Learning Models = 
    32 
    43Benjamin Adrian, Gunnar Grimnes, Jörn Hees, Matthias Sperber 
    54 
    65 
    7 === Abstract === 
     6== Abstract == 
    87 
    98 
    10 === Introduction === 
     9== Introduction == 
     10Classification in general is the problem of deciding for a given input to which class it belongs. Usually classification can be subdivided into a learning phase (aka training phase) and a classification phase (aka test phase). (TODO: offline, online, reinforcement, ... learning) 
    1111 
    12 ==== Relational Classification ==== 
     12=== Relational Classification === 
    1313 
    14 ===== Naive Bayes ===== 
     14==== Nearest Neighbor (1-NN or NN) ==== 
     15Nearest Neighbor classifiers are classifiers of the most simple kind. In the training phase they simply record the class for each sample. Later in the classification phase they calculate the distances of the query to all samples in their records and return the class of the sample which is closest to the query. 
    1516 
    16 Naive bayes r0xx0rz. 
     17===== $k$NN ===== 
     18The $k$-Nearest Neighbor classifier is a generalization of the simple NN, which does not immediately return the single "best match" sample's class, but inspects the nearest $k$ samples to the query and returns a class depending on a merging function, such as: 
     19 * most often observed class 
     20 * classes weighted by inverse distances 
    1721 
    18 ===== Maximum Entropy ===== 
    1922 
    20 ===== Multi Layer Perceptrons ===== 
     23==== Naive Bayes ==== 
     24Naive Bayes Classificators are  
    2125 
    22 ===== Support Vector Machines ===== 
     26==== Maximum Entropy ==== 
    2327 
    24 ==== Sequential Classification ==== 
     28==== Multi Layer Perceptrons ==== 
    2529 
    26 ===== Hidden Markov Model ===== 
     30==== Support Vector Machines ==== 
    2731 
    28 ===== Conditional Random Field ===== 
     32=== Sequential Classification === 
     33 
     34==== Hidden Markov Model ==== 
     35 
     36==== Conditional Random Field ==== 
     37 
     38 
     39== Appendix == 
     40=== Mathematical Foundations === 
     41==== Bayes Rule ==== 
     42{{{ 
     43#!latex 
     44$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$ 
     45}}}